Assignment 3: Intro to PL/SQL		Richard Rennehan
MEMO

From: Richard Rennehan, 0413101, IT Data Analytics
To: Bill Cunningham
Date: November 15, 2018

SUBJECT: DBAS3018 ASSIGNMENT 3

Statement of Requirement

The purpose of this memo is to reveal the answers to the 9 Intro to PL/SQL textbook problems and explain the steps taken to get there.

Existing Materials

Screenshots of the textbook problem instructions are provided in the following pages
[image:]
[image:]
[image:]

[image:]

[image:]

Solutions

The following solutions supply screenshots of the code running and explain the steps taken to get there.

Problem 2.

[image:]

This problem tests your ability to set up a basic PL/SQL block, assign variables, and use concatenation to display messages that are easy to understand.

I always start by immediately writing DECLARE, BEGIN, and END; to split up my PL/SQL block into sections.

As requested, I declared the 4 variables and their datatypes in the DECLARE section of the PL/SQL block. Then, I assigned them the requested values using the := symbol. I was careful to assign the proper datatypes and lengths.

In the BEGIN section, I used DBMS_OUTPUT.PUT_LINE to print each of the 4 lines needed. In each function, I used concatenation with the || symbol to combine the values inside the variables with text strings.

Problem 3.
[image:]

This problem expands on problem 2 with extra variables and more concatenation.

My process was the same as problem 2. I started by writing DECLARE, BEGIN, AND END;. I declared all my variables, their datatype, and their assigned value. Then, I wrote my DBMS_OUTPUT.PUT_LINE functions to print everything needed.

Problem 4.

[image:]

This problem tests your ability to transform original values into new values.

I started declaring the variables and their values. I realized if I wanted to display my result exactly as the textbook, I would need to transform the original values. For example, 7155551234 needed to turn into (715) 555-1234.

I decided to declare new variables that would hold the transformed values. I did not immediately assign a value using := because they are supposed to be empty at the start.

Instead of going straight to DBMS_OUTPUT.PUT_LINE, I started the BEGIN section by setting my values for the transformed versions of the variables. I used INITCAP to turn the names from all caps to proper-case. I used the SUBSTR function and concatenation to turn the phone number into the desired format. With this, I was able to print the whole result using a quick DBMS_OUTPUT.PUT_LINE

This is also the first time where I had to insert an apostrophe in a string. I learned that in a string, you need two apostrophe marks touching to print one apostrophe. Let’s look at '''s', for example. The first mark is to start the string. The second mark and third mark combined is turned into the apostrophe when printed. The fourth mark by itself is used to conclude the string. The process is to start by writing 's', then put the two additional apostrophe marks before the s.

Problem 5.

[image:]

This problem tests your ability to work with dates in PL/SQL.

I declared statehood_date using date as the datatype. To ensure it was stored in the desired date format, I used the TO_DATE function. I stored it as MM/DD/YYYY.

In the BEGIN section, I started by separating the whole date into three separate variables for month, day, and year. I used the TO_CHAR function to accomplish this, which pulled out the value requested from the whole date. I continued like normal using the skills I have learned so far.

Problem 6.

Note that the textbook confuses diameter for circumference. 2πr equals circumference rather than diameter. All instances of diameter are replaced by circumference.

[image:]

This problem tests your ability to apply mathematics to PL/SQL blocks.

I declared the required variables as number datatypes, ensuring that I allowed for plenty of space after the decimal as needed. I declared additional variables to store the circumference and area once they were calculated. I intentionally limited the spaces for circumference and area to 2 so they would be formatted like in the textbook.

[bookmark: _GoBack]In the BEGIN section, I immediately proceeded to calculating the circumference and area. The circumference was as easy as multiply each value together using the * symbol. For area, I called upon the help of the POWER function, which allowed me to square the radius. The rest of the situation used the same printing and concatenating abilities I am familiar with.

Problem 7.

[image:]

This problem tests your ability to use IF structures in PL/SQL blocks. It also extends working with dates

When I first used TO_CHAR(current_date, ‘Month’), I discovered it would print extra spaces after the month. After some research, I discovered that getting month from TO_CHAR will always fill in blank spaces until the month reaches 9 characters. I removed the extra spaces by wrapping the whole function in RTRIM().

This also marked my first time using TO_NUMBER. Because I would have to do number comparisons, I needed to make sure the day was extracted as a number and not a string. Therefore, I wrapped the TO_CHAR function for current_day within a TO_NUMBER() function.

Instead of making three different DBMS_OUPUT.PRINT_LINE functions for each scenario, I decided it would be more efficient to make an additional variable which holds the ending message instead. The IF and ELSIF statements determine which message to use based on the day of the month. I checked the range by using BETWEEN

When making IF, ELSIF, and ELSE structures in PL/SQL, don’t forget to put END IF; at the end.

Problem 8.

[image:]

Problem 8 is an extensive test for if and else structures in PL/SQL.

I grouped each of the years with their own if or else statement by using the IN function. The program finds which group your birthyear is in and supplies the correct animal.

If the year the user entered is not included, the program jumps to the else statement. Here, it prints a message stating the year is not supported before immediately quitting the PL/SQL block early using the return clause.

Problem 9.

[image:]

Problem 9 tested the ability to work with time zones, convert times, and display times in the proper format.

After plenty of research and experimentation, I discovered that the best way is to store each variable as a date format rather than a varchar and convert it into a char format at the end using TO_CHAR.

SYSDATE is the simplest way to get the current date and time. Oracle LiveSQL uses GMT time by default for SYSDATE, so when using the NEW_TIME function, I always placed GMT as the first time zone abbreviation. The second abbreviation in the NEW_TIME function is the time zone to convert to. I live in the AST time zone, so I set the current time variable to Atlantic Standard Time. By repeating this process over for each time zone abbreviation, I was able to make variables containing whole date times for each time zone needed.

The thing left was to convert the entire date into the HH:MI AM/PM format (example 12:01 AM). Using TO_CHAR, I discovered that the string needed was ‘HH:MI AM’. I continued to use DBMS_OUTPUT.PUT_LINE and TO_CHAR for each time zone to print all current times in the 12-hour format as requested by the textbook.

Problem 10.

[image:]
[image:]

Problem 10 was a final test of PL/SQL skills. It was a culmination of all the skills I have learned from problems 2-9 plus a few new skills as well. Instead of using the provided example in the textbook, I used LiveSQL’s SCOTT.EMP table to challenge myself.

[image:]
Figure 1: Sample of rows and columns from SCOTT.EMP

Problem 10 was immediately different because the variables would need to store different values at different times. This meant I would have to use either SELECT INTO or a cursor. Because I knew I would be working with multiple rows, I decided to use a cursor.

Using a cursor would allow me to go through each employee one at a time and calculate their bonus before moving onto the next employee. Creating a cursor was as simple as declaring a select statement as a cursor within the DECLARE section. This also meant I would have to make extra variables for the employee’s name, job, salary, and hire date. These variables temporarily store values from the employee table. To ensure the datatypes from the table and the new variables match up, I declared the variables as the %type.

In the BEGIN section, I started by opening the cursor. Then, to set up the loop through each employee, I placed my LOOP and END LOOP; statements. Between the two is the fetch statement. The fetch statement is the key to transferring the values of the current employee in the loop to the proper variables. To complete the basic structure, I made sure to write: EXIT WHEN c_emp%notfound;. This allows the loop to exit when there are no more employees left.

My first step was to calculate the years the employee has worked. I did this by subtracting their hire date from SYSDATE and dividing the result by 365 to get the difference in years. To ensure the value always rounded down, I wrapped the whole thing in a FLOOR function.

I proceeded with my IF statements. Each would check a certain factor of the employee to determine how much to add to their bonus. For example, managers would receive an extra 5% of their salary as a bonus, but this 5% bonus does not apply to any other jobs. One of the IF checks was to see if the current employee was a manager and if so, it added 5% of their salary to their bonus.

By the end of the current loop, the bonus would be tallied up. Each loop concludes by printing the employee’s name, their job, and the bonus they have received.

It’s important to reset the bonus to 0 after each loop. That way, the bonus does not carry on to the next employee.

2 | Page

image5.png
066°'T$ ST o24AoTdwe STYl JIOJ SNUO] SBYJL
andino (bsogyaseD vy

067‘'%$ ST o9hoTdwe STYa I0F SnNUOg OYL
andino (bs'qoreseDv

00€$ ST oafordwe STY3l I0J SnuOq SYL
andino bsegreseD vy

:smofrog se trerdord yoed
10§ snUOQ PIE[NOTEd oy Ae[dsI(] "PIPASU St SA[QEIILA [EUOTIPPE JSN PUE T[]

 0002/GL/£0| 1bsI0LesEDYY
17861/90/10| [bs'qolesedvy
. €661/10/50| bseQLsEDVY

juswienxs | adMqol | ayep uels safojdws | sweus|iy weidoid

isonpea 1591 Surmorroy 21 Sursn Adoo yoed Yrim ‘strersord 1591 921y 1)) KIRTes
JTRIIND s 22407dwro o) Juasordor 01 ATe[es JUSIIND PIWEU I[qRLIBA AT NN

© 91810 A[[eur] ‘uonesuadiIod sNUOQ ILIQUI BIIXO O3 9AT0D91 p[noys d24ordurs
U3 UA “I(TYL.T, ST 9[qeIIeA STI) JO ONJeA 93 JT ITIOWN BIIXd PIUTBU J[qRLILA
NVITOOg ¢ 21ea1D) ¢, 9dA1 qof 10 v, od4T, qof ur paforduro st ookordwus ot
J1 sogmoads rey odLyTqol paureu o[qerrea N yYHD © 21821 "I9qUINU d[0YM 1SITEIU
9} 0) JNJEA OT[) IBOUNIT, "TELAA JUIIIND) PUE TP 1TEIS AUI UIIMII] OUAIIPTIP
S} UO Paseq 20112 Jo s1eak s 2ako[duwo oy 21e[noed pue ‘@ep arels o2korduws
powreu 9[qeriea F V(] € 18I0 snuoq 22£07duro o3 93e[No[ed 01 9POd) AITH\

70S/1d 031 uoldnpou| v uossaq Jeydeyd 8ccC

image6.png
1 DECLARE
2 inventory_ID numeric(5,0) := 11663;

s inventory_color varchar(12) = 'Sienna’;

r inventory price numeric(7,2) := 259.99;

s inventory QOH numeric(4,2) i= 165

6 seeI

7 DBHS_OUTPUT.PUT_LINE(*Inventory I0: * || inventory_ID);

s DBHSOUTPUT.PUT_LINE("Color: || inventory_color);

s DBHS OUTPUT.PUT_LINE("Price: §' || inventory price);

10 DBHS OUTPUT.PUT_LINE(*Quantity on Hand:]| inventory QOH);
1 e

Statenent processed
Tnventory 10: 11668
Color: Sienna
Price: $259.99
Quantity on Hand: 16

image7.png
25
2
z
2
23
3
3
2
3
B
3
%
7

Ststanent proces:

DECLARE
Student_last_nane varchar(32)
Student_first_name varchar (32)
Student NI varcnar(2) i= 'H'3
student_address varchar(64)
student_city varcnar(s4)
student_state char(2)
student_zip char(s)

=y
1S _OUTPUT.PUT_LINE(student_first_name || * * || student_pr ||
D815 _OUTPUT PUT_LTNE (student_sddres);

DS _OUTPUT. PUT_LTNE (stugent_city ||
£

“uiller
‘sarah’}

*144 windridge slug.
“Eau Claire';

wr

seres’;

* 1 stusent state ||

* 11 stugent_last_nane);

* 11 stugent_zip);

image8.png
DECLARE
faculty_last_name varchar(32)
faculty_first_name varchar(32)
faculty_phone char(19) := ‘71555512343

1
2 fcox';
H
2
s faculty_last_name_proper varchar(32);
s
7
s
s

Koy

faculty_first_name_proper varchar(32);
faculty_phone_formatted varchar(32);
BEGIN
faculty_last_name_proper
10 faculty_first_name_proper
1 faculty_phone_formatted

INITCAP (faculty_last_name);
INITCAP(faculty_first_name);
(|| SUBSTR(faculty_phone,1,3) ||) * ||

12 SUBSTR(faculty_phone,4,3) || *-* || SUBSTR(faculty phone,7,4);
13 DBHS_OUTPUT. PUT_LTNE (faculty_first_name_proper || * ' | faculty_last_name_proper ||
12 *s * || *phone number Is ' || faculty_phone_formatted || *.');

15 enps|

Statenent processed
Kin Cox's phone number is (715) 555-1234.

image9.png
1 DECLARE
2 city varchar(32):= 'Cheyenne';

H state varchar(32) := 'Myoming ;

2 state_nickname varchar(64) = 'Equality State';

s city_nickname varchar(64) := ‘Magic City of the Plains’;
s

7

s

s

city_population number(12,0) := 550003
statehood_date date := TO_DATE('07/10/1830°, "MM/DD/YYYY');
statehood_month varchar(12);

statehood_day number(2,0);

10 statehood_year number (4,0);
11 seeT

12 statehood_month := TO_CHAR(statehood_date, ‘Month');

13 statehood_day := TO_CHAR(statehood_date, 'DD');

14 statehood_year := TO_CHAR(statehood_date, 'YYYY');

15 DBHS_OUTPUT.PUT_LINE(city || ' Is the largest city in * || state ||

16 DBHS_OUTPUT. PUT_LINE("The population of ' || city || * is about * ||

7 City_population || ' people.’);

18 DBHS_OUTPUT.PUT_LINE(state || *''s nickname is the ' || state_nickname ||
13 DBHS_OUTPUT.PUT_LINE("The nickname of * || city || *, * || state ||

20 Q] s | || city_nickname ||)3

2 DBHS_OUTPUT.PUT_LINE(state || * became a state on * || statehood_month ||
2 * || statehood day || . * || statehood_year || *.');

23 enp;|

Statenent processed
Cheyenne Ts the largest city in Wyoming.

The population of Cheyenne is about 55000 people
Wyoming’s nickname is the Equality State.

The nickname of Cheyenne, Wyoming, is

Wyoming became a state on July 10, 1890

gic City of the Plain

image10.png
1 DECLARE
2 pi number(19,7) := 3.1415926;
3 current_radius number(10,7)
4 circumference number(10,2)}
5 area number(10,2);
s

7

s

s

BEGTN
circunference := current_radius * pi * 2;
arca := pi * PONER(current_radius,2);
DBHS_OUTPUT.PUT_LINE(For a circle with radius ' || current_radius ||
10 7, the circunference is * || circunference || * and the area is ° ||
1 area ||)5
12 eno;

Statenent processed
For a circle i

us 3, the circunference is 18.85 and the area is 28.27

image11.png
1 DECLARE
2 current_date date := SYSDATE;

3 current_day varchar(2);

4 current_month varchar(9);

5 end_message varchar(64);

6 BEGIN

7 current_month := RTRIM(TO_CHAR(current_date, 'Month'));

8 current_day := TO_NUMBER(TO_CHAR(current_date, 'DD'));

9 IF current_day BETWEEN 1 AND 10 THEN

10 end_message := 'It is early in the month.';

11 ELSIF current_day BETHEEN 11 AND 20 THEN

12 end_message := 'It is the middle of the month.

13 ELSIF current_day BETHEEN 21 AND 31 THEN

14 end_message := 'It is nearly the end of the month.';

15 END IF;

16

17 DBHS_OUTPUT.PUT_LINE(Tt is Day * || current_day || * of * || current_month ||
18 *. |l end_message);|

19 END;

Statement processed.
It is Day 15 of November. It is the middle of the month.

image12.png
15
17
15
19
2
21
2
23
2
25
2
27
28
2
30
31
32
3
32
35
ES

DECLARE
birth_date nuber(4,0) := 1999;
aninal varchar(10);
BEGIN

if birtn_gate in (1924,1935,1945,1960,1972,1984,1996)
animal i 'Ret';

e1sif birtn_date in (1925,1937,1949,1961,1973,1985,1997)
animal 1= "Cou’s

elsif birtn date in (1326,1935,1950,1962,1974,1986,1998) then
animal 1= 'Tiger';

elsif birtn date in (1327,1939,1951,1963,1975,1957, 1999) tnen
animal 1= 'Rebbit

<155 birtn date in (1925,1349,1952,1964,1976, 1985, 2000)
aninal - ‘Dragon’;

e1sif birtn_date in (1529,1941,1953,1965,1977,1989,2001)
animal i- 'Snake';

e1sif birtn_date in (1930,1942,1954,1966,1975,1999,2002)
animal i- 'Horse's

elsif birtn date in (1931,1343,1955,1967,1979,1991,2003) then
aninal 1= 'Sheep’s

elsif birtn date in (1332,1344,1956,1968,1989,1992,2004) then
aninal 1= "Monkey

e1sif birtn_date in (1933,1945,1957,1969,1951,1993,2005)
animal = ‘Chicken';

elsif birtn date in (1334,1945,1955,1970,1952,1994, 2006) tnen
animal i- 'Dog’;

e1sif birtn_date in (1935,1947,1959,1971,1983,1995,2007)
animal - 'Pig';

else
DBMS_OUTPUT.PUT_LINE (birth_date || * is not supported');
return;

end i3

DBMS_OUTPUT.PUT_LINE('I was born in * || birth_date ||
T, which is the year of the ' || animal || '.");

el

Statenent processed.
I was born in 1999, which is the year of the Rabbit.

image13.png
DECL

aea

0;

ARE

current_tine date i~ NEW_TIME(SYSDATE, "GAT', 'AST');
tine zone_gnt date 1= NEW_TIME(SYSDATE, ‘GiT', '@T');
tine zone_est dste 1= NEW_TIVE(SYSDATE, ‘ST’ 'EST');

tine_zone_cst date
tine_zone_mst date
tine zone_yst date
tine_zone_hst date

3

NEW_TIVE(SYSOATE, "GiT') 'CST');
NEW_TIVE(SYSOATE, "GiT') 'MST');
NEW_TIVE(SYSOATE, ‘GiT') 'PST');
NEW_TIVE(SYSOATE, ‘GT') 'HST');

OBHS_OUTRUT.PUT_LINE(‘The current tine 15 * ||
ToCash (current tine, T 400

06K _OUTRUT.PUT, LINE("The current tine in new vork city 15 * |1
ToCarh cin82one _e5%, LT 1))

06K _OUTRUT.PUT_CINE(“The current tine in Chicago 15 * 11
ToCarh (cin82one _c5%, LT 1))

DBMS_OUTPUT.PUT_LINE("The current time in Honolulu is * ||
ToCarh (cinezone sk, T 1))

0B _OUTRUT.PUT_LINE (FTne current ine.in the vukon 15 * |1
To_CiuR(tine_zone_yst, kT A1)

0BHS _OUTRUT.PUT_LINE(“Tne current tine in Lordon 15 * |1
To_CoAR(tine_zone_gat, "HANT 41));

Statesent processed.

he
he
he
he
he
he

New York City is @8:12 o
Chicago 1s 07:12 P
Forolulu 1 63:12

he vukon 35 05:12 PH
London 3 61512 a1

image14.png
DECLARE
_nane SCOTT.E#P.enaneritype;
job SCOTT. EMP. Jobiitype;
Sal SCOTT.EMP salitype;
hire_date SCOTT.EMP. hiredatettype;
years_worked nurbir (4,0);
bonus_nusber(2,0);
CURSOR ¢_emp 15
SELECT enare, Job, sal, hiresate FRON SCOTT.ENP;
saIn
PEN ¢_enp;
Loop
FETCH c_emp into _nane, c_job, c_sal, ¢_hire_date;
EXIT e C_empinotound;

~-resetting bonus
bonus - o;

--calculate years worked
years worked :- (FLOOR((SYSDATE - c_hire_date) / 365));

~-bonuses for years worked
5 years_vorked SETWEEN 1 AID 5 THEN

bonus - bonus + 109

ELSTF years_worked BETVEEN & AID 10 THEN
bonus - bonus + 200

ELSTF years_worked BETUEEN 11 AW 15 THEN
bonus - bonus + 329;

ELSTF years_worked >= 15 THEN
bonus - bonus + 529;

& 175

image15.png
3 --Add bonuses for job type A and B
3 TF C_job TH('HAUAGER', 'PRESIDENT') THEN
= Bonus := bonus + 00;

36 £15e —job type 8

B bonis - bonus + 2095

E B

B

0 --Adding extra merit

P IF €_30b - "WANAGER" THEN --S¥ Of salary bonus for managers
2 Bonus - bonus + (c_sal * 2.65);

5 B

P

p ~-Display bonus for employes

6 DRNS_OUTPUT,PUT_LINE("The bonus for * || LOER(c_job) 1] * *
P IaTcap(c_name) || * 15 5* || bonus);

Pl

Py &0 Lo0P;

S close cemp;

s oo

Statesent processed

The bonus for president King is 5600

The bonus for sanager Slake is $743

The bonus for sanager Clark is $723

The bonus for sanager Jones is $749

The bonus for analyst Scot is $700

The bonus for analyst Ford s $760

The bonus for clerk Seith iz $760

The bonus for salessan Allen is $700

The bonus for salessan Ward is $700

The bonus for salessan Martin s $768

The bonus for salessan Turner 1 $768

The bonus for clerk Adsns iz 3700

The bonus for clerk Janes iz 3700

The bonus for. clerk Miller is $760

image16.png
208

s

[

image1.png
-ompoooid and
-JNO 9Y3 UL SIN[EA BIEP [ENIOE) ‘OPOO-PIEY 10 195Ul 30U O(J ‘[bs ¢aseyy se [y

oY1 2AEG "sanfea d[qeriea pue arnpadoid ANIT LNd'LNILNO SN Y3 Suisn
‘¢z~ 2By ur umoys se Apoexo mndino ot Aedsip 03 syuowaress weidord 93t

adf] e1eq aweN s|qelien

¥PO[q IV IOH Y UL son[eA UdAIS
oy uroyy udrsse pue ‘sod£y erep seradordde Sursn sofqerrea SULMO[[O} 9YI SIEPI(] "¢

pe-v 2anSi4

-pajarduod fifTndssadzans aanpadodd J0s/1d

g9} :puey uo fi3T3uEnd
66" 652%

BUUITS

= fiaojuanu

sN|d.1105 1IN

ornpoooid ndino oy UT senfeA €IEP [ENIOE) ‘OPOI-PIEY 10 ‘}I3SUL
10U o(['[bS'gase DV Se o[oY3 2ALS “Hg- 2INTJL] Ul UMOYs se Apoexa sreadde

31 05 IndINo oY) JEWIO] SIN[eA J[QELIEA o7 put uonouny 1 NJILNO" S
ay3 Sursn ‘pg-4 2m3ry ur umoys ndino oy3 Ae[dsip 03 syuSTLIEIs Weidord ILLN

adAl »ea@ auwieN a]qeliep

'SoN[eA UQAIS 213 TWIAY) 0) USISSE PUE SI[QRLILA SUIMOJ[OF Y3 SIE[O3(] '

10S/1d 01 uodnposju] v uossa] pasydeyd pze

image2.png
+ Oracle S8°Plus

Karah M. Miller
4y Windridge Blud.
au Claire, WI 547083

PL/SQL procedure successfully completed.

Figure 4-25

4. Declare character variables named faculty_last_name, faculty_first_name, and
faculty_phone. Assign the value ‘COX’ to faculty_last_name, ‘KIM’ to
faculty_first_name, and 7155551234’ to faculty_phone. Write program commands
so that the program displays the output exactly as follows:

Kim Cox's phone number is (715) 555-1234.
Declare and use additional variables as needed. Save your file as 4ACase4.sql. Do
not insert, or hard-code, the actual data values in the output function.

5 Declare the following variable names and assign the associated values, using the

data types specified.

Variable Name Data Type

Thy e acts
Magic C | Character

= @
oo 000 Dee ‘

Write a PL/SQL statement that will concatenate the variables with the necessary
literal values to give the output exactly as shown in Figure 4-26. Declare and use
additional variables as needed. Save the file as 4ACase5.sql. Do not insert, or hard-
code, the actual data values in the output procedure.

Dracle 501 7Plus

U
he population of Cheyenne is about 55,880 people.
yoming's nickname is the Egquality State.
he nickname of Cheyenne, Wyoning, is 'Hagic City of the Plains.’
yoming became a state on July 18, 1898.

PL/SOL procedure successfully completed.

Figure 4-26

6. Write a PL/SQL program that calculates the diameter and radius of a circle. The
formula to calculate the diameter of a circle is 27r, and the formula to calculate

image3.png
O I P3IEIDOSSE [EWIUE SUIULIARP pUE 1edA A1949 1891 01 21n3oNI;s JISTH/AI
ue a5 "93ep yaarq oL 31 01 uisse pue "ITPTYITIG PIUEU S[RLIEA DIED B AIE[II(]

861 ‘b6l ‘796

861 ‘€61 ‘1961 °

S[EWIUE SULMO[IO] AU} LM PAIBIIOSSE SIE SIEAK [PIq DeIpOZ 9saunyy) a3 03 Surproody ‘g

Ibs L35V se o[y o3 aaeg "POpa2U SE SI[qELIEA [EUOD
IPPE 90 PUE IE[O3(T , YIUOW JY3 JO PUD o3 AL SI 3] "TOquILAON] JO (¢ Ae(y
st 31, &edstp prnoys weiSord inok ‘0€ 1oquIanoN ApuaIIn st 1 J1 ‘opdurexs 10

‘Jruowr Elep] JO pus o0l A[.IEQU ST

"<PWIE [HUOU> JO <Idquinu Aeps Ae(J st] 1¢-12
[UOW 93 JO Spprur Y ST 3]

‘<OUWIEU IUOW> JO <Iaquunu Aep> Ae(T st 1] 0Z-11
Jauow Yy ur Ares st iy

‘<OWIEU [IUOW> JO <I9quINU Aeps Ae(] ST 1] 01-1

inding Lec

andino Surmorjoy oy Aerdstp pmoys werdord moA ‘yyuow oy jo Aep Ay uo

Surpuada(T 11 01 TIVASAS uSIsse pue ‘orepTjusIIND PoWIEU SqRrIeA 93D B QIE[I(]

(‘senrea yndino oy punor o) uonduny ANNOY TOS SP'I0 Y3 s JuiEy)
‘[bs"9asEDH St oG o darg 'POPI9U S SO[qeLIEA [EUOLIPPE SN PUE IB[I9(]

"LT'8T SI BAIE o1 PUE CQ'QT SI TOITEIP 33 °C SNIPEI YIIM J[IIID © 10,]
'$mo[[oF st Apoexa ndino oyy Kerdsi(y

¢ MIIWNNN SOIPEI JUAIIND
9¢6S1Y1°¢ MHIGWNN d

‘sonfeA rentur pue sad4y eyep pogmoads o
LM S[qerres SUIMO[[O] o1 SIE[IP prnoys weigord 9y T ;11 ST 91 ® Jo eore oy

T0S/1d 0} uoipnposnu| v uossa § Jaydeyy

: L 96l 'veel |
[ewiuy ‘ 134 Upig

9¢c

image4.png
1o

PL/S

Problem-Solving Cases 227

birth year. Then display your birth year and the associated animal name. For example,
the program would display the following output for someone born in 1984:

I was born in 1984, which is the year of the Rat.
Declare and use additional variables as needed. Save the file as 4ACase8.sql.

. PL/SQL has a function named NEW_TIME that converts an input date and time
from one time zone to another. The general syntax of the function is
time_in desired_time zone := NEW_TIME(time_in_current_
time_zone, current_ time zone_abbreviation, des.7.red t1me
zone_abbreviation). “Some of the time zone abbreviations follow:

CST Central Standard Time

EST Fastern Standard Time

GMT Greenwich Mean Time

HST Alaska/Hawaii Standard Time
MST Mountain Standard Time
PST Pacific Standard Time

YST Yukon Standard Time

For example, to convert the current time from Eastern Standard Time to Central
Standard Time and assign the result to a variable named tulsa_time, you would use the
following function: tulsa_time := NEW_TIME(SYSDATE, 'EST', 'CST');

Worite a program that declares a character variable named time_zone and assign it to
the abbreviation corresponding to your time zone. (If your time zone is not listed,
use ‘BST".) Then, write the code to display the output shown in Figure 4-27.

acle SOL*Plus

current time 82:46 PH

current time in New York City is 83:46 PH
current time in Chicago is 82:46 PH
current time in Honolulu is 18:46 AH
current time in the Yukon is 11:46 AH
current time in London is 88:46 PH

QL procedure successfully completed.

Figure 4-27

10.

Declare and use other variables as needed. Save the file as 4ACase9.sql.

Develop a PL/SQL program to calculate the yearly bonus that a company gives to
its employees. The bonus is determined by considering three factors: (1) how
many years the employee has worked at the company, (2) employee job type, and
(3) whether or not the employee has been recommended for extra merit.

If an employee has worked from 1-5 years, then he or she receives a $100 bonus;
6—10 years merits a $200 bonus; 11-15 years merits a $300 bonus, and over 16
years merits a $500 bonus. For job type, employees in Job Type “A” receive an
additional $100 bonus, and employees in Job Type “B” receive an additional $200
bonus. Finally, if the employee has been commended for Extra Merit, he or she
receives an additional 5% raise based on his or her current salary.

